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This study aims to improve the ability of BCIs to predict gradations in effort associated with a movement task and thus expand the range of available command signals. Offline analysis shows that the EEG can be

used to model and predict five levels of motor effort based on mu-beta suppression using a linear discriminant classifier. The accuracy of the classifier was above chance in all cases, which hints at the potential for its

use in a real-time BCI to interactively modulate the user’s brain rhythms.

Figure 1. Schematic of a typical brain-computer interface. The

three main parts are (1) collection of the raw EEG; (2) signal

conditioning, feature extraction and classification; and (3)

mapping of the predicted intent class into one of many actions.

Natural or artificial sensory feedback closes the loop.
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Methods

Neural Correlates of Graded Movement 

for Brain-Computer Interfaces

Brain-computer interfaces (BCIs) are designed to collect, process, and translate brain

signals into commands for an external device (Fig. 1). This technology offers a new

communication pathway that circumvents the peripheral nervous system. Accurate

decoding of user intent has tremendous potential to improve rehabilitation efforts or assist

in activities of daily living.

All procedures were performed with prior IRB approval and informed consent. 14 healthy

adult subjects (9 male, 5 female) performed a repetitive task in which they were required to

squeeze a hand dynamometer (Vernier, Oregon) in response to a visual cue to reach a

target force. The EEG, electromyogram (EMG), and handgrip force were simultaneously

measured using a biosignal amplifier (g.HiAmp, g.tec, Austria). Active EEG electrodes were

placed at 18 locations on the scalp (Fig. 2). The visual display alternated between different

cue states a fixed number of times (Fig. 3A).

Figure 3. Experimental design. (A) Visual display presented to

subject during each cue. (B) 16 consecutive cues make up a

run. (C) Each run features one of the four different force

targets. Runs alternate between left and right hands at each

force target.

Graded EEG Changes During Movement 

Feedback is given to participants

based on their applied force and the

goal is to squeeze with enough force

for the dynamic blue circle to reach

the concentric black annulus, which

would occur when the exact target

force is exerted.

Target forces are set to a percentage

of each subject’s maximum voluntary

contraction force (MVC) on each

hand. Four such targets/classes were

used here: 20%, 35%, 50%, and 65%

of MVC (Fig. 3C). The rest state

target, i.e., 0% MVC, was included as

an additional class.

Figure 2. EEG scalp montage. Eighteen electrode

potentials (earlobe reference) were recorded with

three (PO7, POz, PO8) used to verify signal

quality and one (F4) to detect ocular artifacts. The

rest, located above motor and sensory cortices,

were used in the GERP analysis.

Today, BCIs are still primarily limited to research settings due to operational challenges1,

specifically the need to generate and discriminate between brain signals associated with

distinct mental tasks to control an external device. If we can leverage the known

suppression of cortical sensorimotor activity in the mu and beta bands of the

electroencephalogram (EEG) (8-30 Hz), we may be able to overcome such challenges in

BCI development.

To model graded event-related 

potentials (GERPs) from the EEG, i.e., 

signals that reflect the level of effort 

associated with a movement task. 

Predicting gradations in motor effort 

associated with a single isometric force 

production task from the EEG would 

multiply the number of available 

command signals. 
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We first transform the raw EEG to highlight differences 

between conditions. Signals are filtered into the mu-beta 

frequency band, and the mean-squared value taken to 

estimate power in “rest” and “movement” periods (Fig. 4). 

➢ Determine whether the EEG during motor planning and initiation are predictive of intended effort

➢ Translate the offline model into a real time system

➢ Investigate adaptive and neuroplastic effects of real-time feedback in the EEG

➢ Develop a training program which will allow a human subject to operate a device hands-free
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Figure 4. Time periods used for feature extraction. The 0% period (red)

consists of EEG data from 1s up to 0.5s before the presentation of the

visual cue. The period used to collect EEG from the other classes

consists of four 0.5-second windows during the last two seconds of the

task period (blue). This was chosen because the subject has usually

reached a stable grip force around the target value by that time.

Table 1. Measures of model performance by class for all subjects. Values are expressed as mean (SD).

Graded Effort Classification

We saw above that topographical differences in the EEG may be associated with different 

MVC target forces/motor effort (Fig 5). Next, a statistical classifier is trained to predict applied 

force. The number of cues/observations in the five classes is balanced and the expected 

performance of a chance predictor is therefore 1 in 5, or 20%. 

A 4-fold cross-validation scheme was used to train and test a linear discriminant (LD) 

classifier that predicts target MVC from a vector of mu-beta EEG power estimates. While 

there are numerous machine learning algorithms that could be used, LDA is chosen because 

it has a relatively low computational load which is convenient in real-time use2. 

Results are stratified by the subject’s use of their dominant and non-dominant hand (12 were 

right-handed, 2 left-handed). Accuracies are reported in terms of a confusion matrix (Fig. 6), 

with the correct classification along the diagonal. Other common metrics of classifier 

performance are reported in Table 1.

Figure 5. Topographical scalp maps of mean-squared EEG mu-beta power, averaged across cues corresponding to different target MVCs (0, 20, 35, 50, and 65%), for a representative subject. As

expected, the rest condition (0% MVC) exhibits high mu-beta power globally. For the non-zero targets, mu-beta EEG power gradually decreases and becomes more spatially diffuse as the target value

increases. The spatial differences between conditions provide additional information that could help differentiate between levels of effort in the motor task.
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Dominant Hand Non-Dominant Hand

Class
Sensitivity 

(%)
Specificity 

(%) F1 Score (%)
Sensitivity 

(%)
Specificity 

(%) F1 Score (%)

0% 78 (18) 89 (14) 82 (16) 74 (22) 89 (11) 79 (18)

20% 63 (25) 63 (23) 63 (24) 67 (21) 64 (20) 65 (20)

35% 68 (23) 64 (18) 66 (20) 66 (19) 65 (21) 65 (20)

50% 65 (23) 63 (21) 64 (22) 73 (25) 70 (23) 72 (23)

65% 69 (19) 65 (20) 67 (19) 72 (24) 68 (20) 70 (22)

Matthews correlation coefficient (MCC) is a measure of the quality of classification. Values 

can range from -1 to +1, where -1 is complete disagreement, 0 is random agreement, and 

+1 is complete agreement. Eq. 1 shows how to compute this metric from a confusion 

matrix. MCC for each class is shown in Fig 7. The grand mean value of MCC is 0.41. 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁 −𝐹𝑃×𝐹𝑁

(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
(1)

TP = true positive

TN = true negative

FP = false positive 

FN = false negative

Figure 6. Confusion matrices for the dominant and non-dominant hands reporting mean % accuracy (with standard error) averaged across all subjects (n

= 14). Recall that the theoretical chance level of prediction for each class is 20%. Diagonal elements are typically well above this level while off-diagonal

elements are below it, which suggests that the classifier is able to discriminate between different levels of exerted force based on EEG features.

Figure 7. Distribution of MCC for all subjects (n = 14).
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