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Brain-Machine Interfaces

What is a Brain-Machine Interface ?
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Brain-Machine Interfaces

What is a Brain-Machine Interface ?

System that translates brain signals into commands for a device
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Brain-Machine Interfaces

g.BClsys, g.tec Medical Engineering

ase Haddix University of BMES 2018 October 19, 2018



Brain-Machine Interfaces

Limitations of Current Technology

m Unnatural Control

m Limited Control
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Neural Correlates of Graded Movement

Sensorimotor Rhythm (SMR)

Type Frequency Signal Shape Properties Mental Activity
range (Hz)
Mu (1) 8-13 Sensorimolor cortex Suppression indicates that
motor neurons are working
Beta (f3) 12-30 sensorimotor cortex, Alert, thinking and active
between C3 and C4 , concentration.
symmetrical distribution,
most evident frontally;
low amplitude waves

Ramadan et al. 2016
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Control Signals : Graded SMR modulation
m Hand grip force activity
= Find difference between different levels of effort

m Effort = % of maximum exerted force
m 4 different levels
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Methods

Feasibility Study : Cue-Driven Recording

m EEG : 18 Channels
m 256 Hz, 0.1-100 Hz BPF
m Grip force, Forearm EMG
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Methods

Feasibility Study : Cue-Driven Recording

m EEG : 18 Channels
m 256 Hz, 0.1-100 Hz BPF
m Grip force, Forearm EMG

m 21 cues/run, 1 run/effort level

m Left + right handed runs, randomized
control cues

= 8 Healthy Subjects (7 male)
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Methods

2-Stage Model

1. Use movement onset from
Stage 1

2. Extract features reflecting
SMR modulation

3. Classify each movement
with logistic regression

4. Evaluate performance

1. Extract ERPs from each
movement cue

2. Split ERPs into training and
testing sets

3. Obtain ERP template from
training set

4. Compute pyy with sliding
window testing set

5. Use a threshold to detect
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ESS

Movement Detection

Dominant Hand Non-Dominant Hand
m Detections : 86.33% m Detections : 88.09%
(4.76) (6.10)

Chase Haddix University of Kentucky BMES 2018 October 19, 2018 8/13



ESS

Movement Detection

Dominant Hand Non-Dominant Hand

m Detections : 86.33% m Detections : 88.09%
(4.76) (6.10)

Dominant Hand, Pooled Non-Dominant Hand, Pooled

05 3 05

2 15 -1 0.5 ] 25 2 15 -1 -0.
(Detected Movement - Actual Movement), in seconds (Detected Movement - Actual Movement), in seconds

Chase Haddix University of Kentucky BMES 2018 October 19, 2018 8/13



ESS

Graded Effort Classification

Chance Level : 25%
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Graded Effort Classification

ESS

Dominant Hand, Pooled
Target Effort

Chance Level : 25%

Non-Dominant Hand, Pooled

Target Effort
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ESS

Simulated Online Performance
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ESS

Simulated Online Performance
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ESS

Simulated Online Performance
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ESS

Simulated Online Performance
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Study Limitations and Future Work

Study Limitations
m n = 8 subjects

m Offline Model

m Actual Force

Limitations and Future
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Limitations and Future Work

Study Limitations and Future Work

Study Limitations Future Work

m n = 8 subjects m Optimize Model
m Offline Model m Online BMI

m Actual Force m Motor Imagery
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Limitations and Future Work

Acknowledgments

University of Kentucky T Neural Systems Lab

Sridhar Sunderam, PhD

= Amir Al-Bakri National Science

= Asma’a Ajwad Foundation .
m Dillon Huffman Grant 1539068 A
= Hao Wang, PhD **r‘%
= Matt Ballard

Sarah Thomas
Advisory Committee BMES
® Bruce O’Hara, PhD

= Guogiang Yu, PhD
m Kevin Donohue, PhD

% College of
Engm rmg

Chase Haddix University of Kentucky BMES 2018 October 19, 2018 12/13



Limitations and Future Work

Summary...Questions ?

Utilize natural control signals

= Graded motor response

Task

Detect Movement and Predict Level of
Effort

Graded effort = increased number of Prepr
classes

Future Work : Online + Motor Imagery

= Effort prediction based on imagination

Contact : Chase.Haddix@uky.edu
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